281 research outputs found

    Steady-State Analysis of Load Balancing with Coxian-22 Distributed Service Times

    Full text link
    This paper studies load balancing for many-server (NN servers) systems. Each server has a buffer of size b1,b-1, and can have at most one job in service and b1b-1 jobs in the buffer. The service time of a job follows the Coxian-2 distribution. We focus on steady-state performance of load balancing policies in the heavy traffic regime such that the normalized load of system is λ=1Nα\lambda = 1 - N^{-\alpha} for 0<α<0.5.0<\alpha<0.5. We identify a set of policies that achieve asymptotic zero waiting. The set of policies include several classical policies such as join-the-shortest-queue (JSQ), join-the-idle-queue (JIQ), idle-one-first (I1F) and power-of-dd-choices (Podd) with d=O(NαlogN)d=O(N^\alpha\log N). The proof of the main result is based on Stein's method and state space collapse. A key technical contribution of this paper is the iterative state space collapse approach that leads to a simple generator approximation when applying Stein's method

    The localization of single pulse in VLBI observation

    Full text link
    In our previous work, we propose a cross spectrum based method to extract single pulse signals from RFI contaminated data, which is originated from geodetic VLBI postprocessing. This method fully utilizes fringe phase information of the cross spectrum and hence maximizes signal power, however the localization was not discussed in that work yet. As the continuation of that work, in this paper, we further study how to localize single pulses using astrometric solving method. Assuming that the burst is a point source, we derive the burst position by solving a set of linear equations given the relation between residual delay and offset to a priori position. We find that the single pulse localization results given by both astrometric solving and radio imaging are consistent within 3 sigma level. Therefore we claim that it is possible to derive the position of a single pulse with reasonable precision based on only 3 or even 2 baselines with 4 milliseconds integration. The combination of cross spectrum based detection and the localization proposed in this work then provide a thorough solution for searching single pulse in VLBI observation. According to our calculation, our pipeline gives comparable accuracy as radio imaging pipeline. Moreover, the computational cost of our pipeline is much smaller, which makes it more practical for FRB search in regular VLBI observation. The pipeline is now publicly available and we name it as "VOLKS", which is the acronym of "VLBI Observation for frb Localization Keen Searcher".Comment: 11 pages, 4 figures, 3 tables, accepted for publication in A

    Spin alignments of spiral galaxies within the large-scale structure from SDSS DR7

    Full text link
    Using a sample of spiral galaxies selected from the Sloan Digital Sky Survey Data Release 7 (SDSS DR7) and Galaxy Zoo 2 (GZ2), we investigate the alignment of spin axes of spiral galaxies with their surrounding large scale structure, which is characterized by the large-scale tidal field reconstructed from the data using galaxy groups above a certain mass threshold. We find that the spin axes of only have weak tendency to be aligned with (or perpendicular to) the intermediate (or minor) axis of the local tidal tensor. The signal is the strongest in a \cluster environment where all the three eigenvalues of the local tidal tensor are positive. Compared to the alignments between halo spins and local tidal field obtained in N-body simulations, the above observational results are in best agreement with those for the spins of inner regions of halos, suggesting that the disk material traces the angular momentum of dark matter halos in the inner regions.Comment: 8 pages, 7 figures, accepted for publication in Ap

    DNA methylation and regulatory elements during chicken germline stem cell differentiation

    Get PDF
    Funding for Open Access provided by the UMD Libraries' Open Access Publishing Fund.The production of germ cells in vitro would open important new avenues for stem biology and human medicine, but the mechanisms of germ cell differentiation are not well understood. The chicken, as a great model for embryology and development, was used in this study to help us explore its regulatory mechanisms. In this study, we reported a comprehensive genome-wide DNA methylation landscape in chicken germ cells, and transcriptomic dynamics was also presented. By uncovering DNA methylation patterns on individual genes, some genes accurately modulated by DNA methylation were found to be associated with cancers and virus infection, e.g., AKT1 and CTNNB1. Chicken-unique markers were also discovered for identifying male germ cells. Importantly, integrated epigenetic mechanisms were explored during male germ cell differentiation, which provides deep insight into the epigenetic processes associated with male germ cell differentiation and possibly improves treatment options to male infertility in animals and humans

    Robust Face Recognition With Kernelized Locality-Sensitive Group Sparsity Representation

    Get PDF
    In this paper, a novel joint sparse representation method is proposed for robust face recognition. We embed both group sparsity and kernelized locality-sensitive constraints into the framework of sparse representation. The group sparsity constraint is designed to utilize the grouped structure information in the training data. The local similarity between test and training data is measured in the kernel space instead of the Euclidian space. As a result, the embedded nonlinear information can be effectively captured, leading to a more discriminative representation. We show that, by integrating the kernelized local-sensitivity constraint and the group sparsity constraint, the embedded structure information can be better explored, and significant performance improvement can be achieved. On the one hand, experiments on the ORL, AR, extended Yale B, and LFW data sets verify the superiority of our method. On the other hand, experiments on two unconstrained data sets, the LFW and the IJB-A, show that the utilization of sparsity can improve recognition performance, especially on the data sets with large pose variation

    Revealing the cosmic web dependent halo bias

    Full text link
    Halo bias is the one of the key ingredients of the halo models. It was shown at a given redshift to be only dependent, to the first order, on the halo mass. In this study, four types of cosmic web environments: clusters, filaments, sheets and voids are defined within a state of the art high resolution NN-body simulation. Within those environments, we use both halo-dark matter cross-correlation and halo-halo auto correlation functions to probe the clustering properties of halos. The nature of the halo bias differs strongly among the four different cosmic web environments we describe. With respect to the overall population, halos in clusters have significantly lower biases in the {1011.01013.5h1M10^{11.0}\sim 10^{13.5}h^{-1}\rm M_\odot} mass range. In other environments however, halos show extremely enhanced biases up to a factor 10 in voids for halos of mass {1012.0h1M\sim 10^{12.0}h^{-1}\rm M_\odot}. Such a strong cosmic web environment dependence in the halo bias may play an important role in future cosmological and galaxy formation studies. Within this cosmic web framework, the age dependency of halo bias is found to be only significant in clusters and filaments for relatively small halos \la 10^{12.5}\msunh.Comment: 14 pages, 14 figures, ApJ accepte

    Microlensing effect of charged spherically symmetric wormhole

    Full text link
    We systematically investigate the microlensing effect of charged spherically symmetric wormhole, where the light source is remote from the throat. Remarkably, there will be at most three images by considering the charge part. We study all situations including three images, two images, and one image, respectively. The numerical result shows that the range of total magnification is from 10510^5 to 10210^{-2} depending on various metrics. In the case of three images, there will be two maximal values of magnification (a peak, and a gentle peak) when the contribution via mass is much less than that of charge. However, we cannot distinguish the case that forms three images or only one image as the total magnification is of order 10510^5. Finally, our theoretical investigation could shed new light on exploring the wormhole with the microlensing effect.Comment: 10 pages, 9 figure

    A Survey on Deep Multi-modal Learning for Body Language Recognition and Generation

    Full text link
    Body language (BL) refers to the non-verbal communication expressed through physical movements, gestures, facial expressions, and postures. It is a form of communication that conveys information, emotions, attitudes, and intentions without the use of spoken or written words. It plays a crucial role in interpersonal interactions and can complement or even override verbal communication. Deep multi-modal learning techniques have shown promise in understanding and analyzing these diverse aspects of BL. The survey emphasizes their applications to BL generation and recognition. Several common BLs are considered i.e., Sign Language (SL), Cued Speech (CS), Co-speech (CoS), and Talking Head (TH), and we have conducted an analysis and established the connections among these four BL for the first time. Their generation and recognition often involve multi-modal approaches. Benchmark datasets for BL research are well collected and organized, along with the evaluation of SOTA methods on these datasets. The survey highlights challenges such as limited labeled data, multi-modal learning, and the need for domain adaptation to generalize models to unseen speakers or languages. Future research directions are presented, including exploring self-supervised learning techniques, integrating contextual information from other modalities, and exploiting large-scale pre-trained multi-modal models. In summary, this survey paper provides a comprehensive understanding of deep multi-modal learning for various BL generations and recognitions for the first time. By analyzing advancements, challenges, and future directions, it serves as a valuable resource for researchers and practitioners in advancing this field. n addition, we maintain a continuously updated paper list for deep multi-modal learning for BL recognition and generation: https://github.com/wentaoL86/awesome-body-language
    corecore